
Thorntail Documentation
The Thorntail Team

Version 4.0.0-SNAPSHOT

Table of Contents
Introduction. 2

1. Lessons Learned. 3

2. Architecture . 5

2.1. Basics. 5

2.2. Details . 5

3. Concepts . 7

3.1. Microservice . 7

3.2. CDI-native. 7

3.3. MicroProfile-native . 7

3.4. Flat Classpath . 7

Usage . 8

4. main(…) . 9

Tools. 11

5. Maven Plugin . 12

5.1. Modes . 12

5.2. Formats. 13

5.3. main() . 13

5.4. Other configuration. 13

5.5. Distribution Structure. 14

6. Maven Archetypes . 16

6.1. JAX-RS . 16

7. Testing with JUnit . 17

8. Testing with Arquillian. 19

9. Developer Tools . 21

Components . 23

10. Using the BOM with Maven. 24

11. Kernel . 25

11.1. Configuration . 25

12. Java EE . 28

12.1. Bean Validation . 28

12.2. Servlet . 28

12.3. JAX-RS . 31

12.4. WebSockets . 31

12.5. JSON-P. 31

12.6. JNDI . 32

12.7. JDBC. 32

12.8. DataSources. 33

12.9. JPA . 33

12.10. JPA Support . 34

12.11. JTA . 34

12.12. JCA . 34

12.13. JMS. 36

12.14. JMS-Artemis . 36

13. MicroProfile . 38

13.1. Config . 38

13.2. Fault Tolerance . 38

13.3. Health . 38

13.4. Metrics . 38

13.5. OpenAPI . 39

13.6. OpenTracing . 39

13.6.1. OpenTracing with Jaeger . 40

14. Other. 41

14.1. Vert.x . 41

14.2. OGM. 42

Guides . 44

15. Build Thorntail from Source . 45

16. How to build Linux Containers as Layers . 46

17. How to build Linux Containers using Fabric8 Maven Plugin . 50

18. Using log4j . 52

Appendix . 53

19. License . 54

About

Thorntail is the new name of WildFly Swarm. This documentation applies to the
proof of concept for v4.x of the project.

Other Formats

This documentation also available as HTML.

https://docs.thorntail.io/4.0.0-SNAPSHOT/

Introduction

Chapter 1. Lessons Learned

We’ve spent a couple of years building and living with the current Thorntail (née WildFly
Swarm) codebase. Over this time, we’ve learned a few things from our own experiences and
those of our community. These are their stories.

Mangling artifacts is dangerous

When you mangle and repackage a user’s artifacts and dependencies, it can many times go awry.

Don’t replace Maven

Let Maven (or Gradle) handle the entirety of pulling dependencies. We cannot predict the topology
of someone’s repository managers, proxies and network.

Don’t get complicated with uberjars

The more complex our uberjar layout is, the harder it is to support Gradle or other non-Maven
build systems.

Classpaths are tricky

If different codepaths are required for executing from Maven, an IDE, a unit-test, and during
production, you will have a bad time.

Don’t insist on uberjars

For Linux containers, people want layers that cleanly separate application code from runtime
support code.

Testability is important

A slow test is a test that is never willingly executed. PRs take forever to validate. Users like to be
able to test their own code quickly and iteratively.

Easily extensible means ecosystem

If it’s entirely too difficult to extend the platform, the ecosystem will not grow. New integrations
should be simple.

Related: Core things should not be any more first-class than community contributions

For instance, auto-detection in WildFly Swarm only worked with core fractions; user-provided
wouldn’t auto-detect.

Ensure the public-vs-private API guarantees are clear.

Intertwingly code (and javadocs) make finding the delineation between public API and private
implementations difficult.

Allow BYO components

We don’t want to decide all of the implementations, and certainly not versions, of random
components we support.

Be a framework, not a platform

Frameworks are easier to integrate into an existing app; a platform becomes the target with
(generally too many) constraints.

Maintain tests & documentation

Ensure the definition of "done" includes both tests and documentation.

Productization complexity

The greater divergence between community and product, the more effort is required for
productization. Complicating any process to automate productization from community.

BOM complexity

Related to productization as well, but of itself having a handful of BOMs made life confusing for us
and for users. There were often times where fractions would be "Unstable" or "Experimental" for
months with no real reason other than we forgot to update it.

Chapter 2. Architecture
Previous versions of Thorntail had a lot of architecture. And a lot of complexity.

2.1. Basics
Just CDI Bean Archives

Instead of magic fractions with a lot of ceremony and boiler-plate, a Thorntail component is usually
just a plain CDI bean archive. These archives may include CDI beans, extensions, and optional
default configuration (provided through MicroProfile Config mechanisms).

Application & Runtimes Mix

There is no distinction between application code and runtime code, other than the archives that
provide the classes and components.

2.2. Details
Any given component may provide CDI beans, extensions, both or neither. A CDI portable extension
may be used to convert non-CDI components, such as Servlets or JAX-RS resources, into CDI-aware
components. For instance, thorntail-servlet contains a CDI extension that scans for all Servlet
implementations and creates relevant meta-data to allow deployment of them.

void createServletMetaData(@Observes AfterBeanDiscovery event, BeanManager
beanManager) {
 beanManager.getBeans(Servlet.class).forEach(e -> {
 createServletMetaData((Bean<Servlet>) e, event, beanManager);
 });
}

Similar extensions exist to discover things such as @MessageDriven implementations.

Optional Dependency-enabled Functionality

For functionality such as OpenTracing, the ability to detect the presence of implementations is
baked into the kernel. When a particular dependency is available (such as Jaeger), additional
capability is enabled. Through the usage of @RequiredClassPresent, entire CDI beans and producers
may be automatically vetoed (disabled) if particular classes are not present.

@ApplicationScoped
@RequiredClassPresent("com.uber.jaeger.Configuration")
@Priority(1000)
public class JaegerTracerProvider implements TracerProvider {
 @Override
 public Tracer get() {
 return this.configuration.getTracer();
 }

 @Inject
 Configuration configuration;
}

In the above situation, if Jaeger’s Configuration class is not available on the classpath through
dependencies, then the Jaeger-based Tracer will not be produced.

Multiple instances of @RequiredClassPresent and its inverse, @RequiredClassNotPresent, may be
applied. If either annotation is supplied, then all annotations must be true to prevent the automatic
disabling of that component.

Chapter 3. Concepts

3.1. Microservice
A microservice is small application with a bounded domain. A microservice is intended to solve a
semantically constrained problem related to a larger system. In a microservice-based architecture,
an application is made from a collection of many microservices.

3.2. CDI-native
Thorntail is built from the from ground-up to be CDI-native. Building applications of any notable
size benefit from the usage of a dependency-injection framework.

3.3. MicroProfile-native
Thorntail is built from the from ground-up to be MicroProfile-native. MicroProfile addresses many
of the needs and requirements of microservices-centric applications. Instead of bolting MicroProfile
facilities on, Thorntail natively supports the various MicroProfile specifications directly.

3.4. Flat Classpath
While Java application servers previously have had the ability to support multiple disparate
applications, when building microservices, a runtime need only support a single application, or
service. With a microservices architecture, significantly fewer resources and capabilities may be
required for each service. Freely mixing service and application implementations becomes
significantly less problematic and certainly less cumbersome.

That being said, the Java Platform Module System (JPMS) may become beneficial in the future after
further adoption by other upstream projects.

Usage

Chapter 4. main(…)
Since Thorntail is more of a library and framework than it is a platform, and everything executes
within a flat classpath, you need a main(…) to start the Java process.

Implicit main(…)

Implicitly, Thorntail provides a main(…) entry-point if you do not provide one. The Maven plugin
will scan your application for a class that provides a main(…) method, but if one is not found,
io.thorntail.Main will be used.

From your IDE, you can usually configure a Run target specifying an arbitrary class outside of your
application (but within your classpath). In this case, you may also use io.thorntail.Main.

Explicit main(…)

In the event you desire to write and control the process startup, you must provide a main(…)

method matching the Java requirements:

• public qualifier

• static qualifiter

• void return type

• named main

• with an array (or varargs) of String arguments.

The simplest possible main(…):

public class MyMain {
 public static void main(String... args) throws Exception {
 Thorntail.run();
 }
}

If you desire to have a main(…) within your codebase, but have do not require custom behaviour,
your class my simply extend io.thorntail.Main, which provides an appropriate entry-point.

import io.thorntail.Main;

public class MyMain extends Main {
 /* nothing required */
}

Now you may directly execute your MyMain class directly from your IDE.

When Using Other Frameworks

One common pattern, when using a framework such as JAX-RS, is to place the main(…) within the
primary application class, instead of a specialized class. With JAX-RS, the Application is a prime

candidate:

@ApplicationPath("/")
public class MyApplication extends Application {
 public static void main(String... args) throws Exception {
 Main.main(args);
 }
}

Tools

Chapter 5. Maven Plugin
The thorntail-maven-plugin exists to make packaging your application easier.

Basic Configuration

As with any Maven plugin, configuration occurs within your project’s pom.xml

The plugin has one available goal: package. The behavior of this goal is controlled by the plugin
configuration, described below.

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <version>4.0.0-SNAPSHOT</version>
 <configuration>
 <!-- global configuration -->
 </configuration>
 <executions>
 <execution>
 <goals>
 <goal>package</goal>
 </goals>
 <configuration>
 <!-- execution-specific configuration -->
 </configuration>
 </execution>
 </executions>
</plugin>

5.1. Modes
The plugin can operate in two modes: fat and thin, with fat being the default. The mode is selected
by a <mode>…</mode> block within the plugin configuration, or by the thorntail.mode property.

fat

Produces an executable build that includes all dependencies and your application artifact.

thin

Produces an executable build that includes all dependencies but not your application artifact.

Mode is an independent concept from format, described below.

<configuration>
 <mode>thin</mode>
</configuration>

5.2. Formats
The plugin can produce three different types of executable distributions: jar, dir, and zip, with jar
being the default. The format is selected by a <format>…</format> block within the plugin
configuration, or by the thorntail.format property. These contents of any of these formats is still
defined by the mode, described above.

jar

Produces a fat jar (or überjar) containing the cotnents defined by the mode above. The jar may be
executed using normal java -jar commands.

dir

Produces a directory containing the contents defined by the mode above, along with scripts to easily
execute it. The dir layout may be best suited for container-related pipelines, where all runtime
support aspects are added to a base layer, and the topmost layer contains only the vanillia
application artifact. To achieve this method, mode should be configured to be thin.

zip

Produces the same content as the dir format, but as a .zip file.

<configuration>
 <format>dir</format>
</configuration>

5.3. main()
The plugin will attempt to discover an existing non-ambiguous main(…) within your application. If
it finds none, a default main(…) will be configured. If it finds a single application-provided main(…),
it will be used. If it finds multiple application-provided main(…) methods, an error will result. To
resolve an ambiguous main(…) error, a mainClass may be configured using a <mainClass>…
</mainClass> block within the plugin configuration, or by the thorntail.mainClass property.

<configuration>
 <mainClass>com.mycorp.myapp.Main</mainClass>
</configuration>

5.4. Other configuration
Naming

The artifact produced will include the Maven classifier of -bin. This classifier may be changed using
the <classifier>…</classifier> configuration element, or thorntail.classifier property.

The artifact will be named the same as the primary project artifact (according to
${project.finalName}), unless a plugin configuration of <finalName>…</finalName> or a property of
thorntail.finalName is provided.

Attaching

If the format is jar or zip, it will be attached to the Maven project, causing it to be built or deployed
to the repository. If the format is dir, it can not be attached.

To disable attaching of a jar or zip build, a configuration block of <attach>…</attach> or property
of thorntail.attach may be set to false.

5.5. Distribution Structure
Directory and Zip

When dir or zip formats are selected, the layout of the resulting tree is relatively simple:

bin/

Directory containing platform-specific scripts to execute the application.

bin/run.sh

A Unix-compatible shell script for launching the application. If the distribution was built as a
thin distribution, the application archive must be provided in one of two ways:

• As an argument to the run.sh command.

• By placing it within the app/ directory.

bin/run.bat

A Windows-compatible batch script for launching the application. If the distribution was built as
a thin distribution, the application archive must be provided in one of two ways:

• As an argument to the run.bat command.

• By placing it within the app/ directory.

app/

A directory to contain the application archive. If the distribution was built as a thin distribution,
this directory will be empty. When using containers, the top-most layer may be responsible for
placing the application archive in this location, or may mount the archive into this directory
when run.

lib/

Contains all dependencies for the application. Care is taken to ensure last-modified timestamps
of the contents of this directly do not change needlessly.

Jar

When the jar format is selected, the contents of the jar are also relatively simple:

*.jar

All .jar archives are placed within the root of the resulting -bin.jar.

bin/Run.class

A bootstrapping class is provided which can set up the classpath given the contents at the root of
the jar. The bootstrap class will extract all of the .jar artifacts from the root to a cache directory
at $HOME/.thorntail-cache. The extracted jars will have a SHA-1 hash added to their names in

order to disambiguate any identically named jars from this or other applications, as the cache is
shared.

META-INF/MANIFEST.MF

The Jar manifest is configured to run the bin.Run main bootstrapping class when java -jar is
used.

Chapter 6. Maven Archetypes
Maven archetypes are provided to make it quick to get started with new Thorntail projects.

6.1. JAX-RS
Maven Coordinates

<dependency>
 <groupId>io.thorntail.archetypes</groupId>
 <artifactId>thorntail-jaxrs-archetype</artifactId>
</dependency>

Create a new project

mvn archetype:generate \
 -DarchetypeGroupId=io.thorntail.archetypes \
 -DarchetypeArtifactId=thorntail-jaxrs-archetype \
 -DarchetypeVersion=4.0.0-SNAPSHOT \
 -DgroupId=com.mycorp \
 -DartifactId=my-app \
 -Dversion=1.0-SNAPSHOT

Your project will be created in the my-app/ directory, and contain stubs to get your started. These
stubs include a JUnit-based test, along with appropriate configuration of your pom.xml.

Chapter 7. Testing with JUnit
Thorntail provides a JUnit TestRunner implementation which allows your JUnit tests to execute
within the context of your full application. To use the TestRunner, you must include the testing
artifact with <scope>test</scope>.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-testing</artifactId>
 <scope>test</scope>
</dependency>

Use the ThorntailRunner`

Write your JUnit test as usual, but include a class-level annotation of
@RunWith(ThorntailRunner.class)

@RunWith(ThorntailRunner.class)
public class MyTest {
 // tests go here
}

Participate in CDI

Your test class will be instantiated and injected for each test method. You may use @Inject to inject
any component available to your application. The entirety of your application will be booted and
available.

@RunWith(ThorntailRunner.class)
public class MyTest {

 public void testSomething() throws Exception {
 assertThat(myLunch.getCheese()).isEqualTo("cheddar");
 }

 @Inject
 private Lunch myLunch;
}

Use @EphemeralPorts

If the annotation @EphemeralPorts is applied at the class level, and your application uses a servlet
container, then arbitrary emphemeral ports will be selected and used. This may be useful when
running tests on a CI machine or if you wish to parallelize your tests.

In order to know what port are actually selected and in-use, you may @Inject either a @Primary or
@Management URL or InetSocketAddress component. These instances are made available throw the

Servlet component.

assertj

The testing artifact transitively brings in assertj for making fluent assertions in your tests.

RestAssured

The testing artifact transitively brings in RestAssured to enable easily testing of HTTP endpoints.
Additionally, it preconfigures the RestAssured.baseURI to the URL for the primary web endpoint, if
available. The preconfiguration of the baseURI is especially useful when you use @EphemeralPorts.

Related Information

Testing with Arquillian

http://joel-costigliola.github.io/assertj/index.html
http://rest-assured.io/

Chapter 8. Testing with Arquillian
Arquillian is a framework which assists with both blackbox and in-container testing of your
components. The MicroProfile TCKs use the Arquillian framework in order to verify compliance
with the specifications.

Maven Coordinates

To use the Arquillian integration, include the testing-arquillian artifact in your project with a
<scope>test</scope> block.

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-testing-arquillian</artifactId>
 <scope>test</scope>
</dependency>

Arquilian Deployable Container

Thorntail provides an Arquillian-compatible deployable container which allows a developer to
deploy only the components they wish to test. Additionally, the tests themselves may either be
blackbox (@RunAsClient) or in-container where they can directly interact with the components under
test.

Writing an in-container Test

Using JUnit, write a test as you normally would, but include a class-level annotation of
@RunWith(Arquillian.class).

Additionally, to specify the components you wish to be tested, you must provide a method marked
@Deployment which produces a ShrinkWrap archive to be consider as the application.

@RunWith(Arquillian.class)
public class MyTest {

 @Deployment
 public static JavaArchive myDeployment() {
 JavaArchive archive = ShrinkWrap.create(JavaArchive.class);
 // set up archive
 return archive;
 }

}

For in-container tests, the test class itself (MyTest in this case) is considered an injectable CDI bean.
Any components your application creates, or which are normally available from Thorntail may be
injected.

@RunWith(Arquillian.class)
public class MyTest {

 @Deployment
 public static JavaArchive() {
 JavaArchive archive = ShrinkWrap.create(JavaArchive.class);
 // set up archive
 return archive;
 }

 public void testSomething() throws Exception {
 assertThat(myLunch.getCheese()).isEqualTo("cheddar");
 }

 @Inject
 private Lunch myLunch;

}

Related Information

Testing with JUnit

Chapter 9. Developer Tools
Thorntail provides a set of developer tools to allow for restarting or reloading classes when
developing a Thorntail-based application. The simple ability to restart a running process when
compiled .class files or packaged .jar files are changed is built in to the core. To gain the ability to
hot reload classes into an running executable, an additional dependency is required.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-devtools</artifactId>
</dependency>

Setting the THORNTAIL_DEV_MODE

To enable either the restarting of processes or hot-reloading of classes, the environment variable
THORNTAIL_DEV_MODE must be set.

restart

Capability always included in the core, which will watch the contents of the classpath. Upon
noticing changes, the process will be terminated and restarted, causing the JVM to load new
versions of all classes.

reload

Capbility only available if the above thorntail-devtools dependency is added to the project. It
will watch for changes to the contents of the classpath (only .class files, not packaged .jar files)
and attempt to load and redefine the classes within the running process.

debug

Capbility always included in the core, which only enables remote debug mode for the JVM.

Using restart mode

Restart works primarily with directory layouts. The provided bin/run.sh will use either the
application’s own packaged .jar if built using <mode>fat</mode> or will attempt to use
target/classes/ if built with <mode>thin</mode>. Start the process with the environment variable set
to restart

$ THORNTAIL_DEV_MODE=restart ./target/myapp-bin/bin/run.sh

Then rebuild your project as appropriate

$ mvn compile

Within the console of the running process, you should see, within a few seconds, the process stop
and restart automatically.

Using reload mode

Add the above Maven <dependency> block to your project.

Then follow the same steps as for restart, but setting the mode to reload.

$ THORNTAIL_DEV_MODE=reload ./target/myapp-bin/bin/run.sh

The rebuilt your project as appropriate

$ mvn compile

Additionally, the same behavior is available if you execute your main() directly from your IDE with
the environment variable set appropriately. Triggering a recompilation from within your IDE
should also cause hot reloading of your classes within the running process.

Using debug mode

This mode simply enables the remote JVM debug protocol on port 8000.

$ THORNTAIL_DEV_MODE=debug ./target/myapp-bin/bin/run.sh

Components

Chapter 10. Using the BOM with Maven
Use the BOM

All components and dependencies of Thorntail are version-managed in a Bill of Materials (BOM).
Within your pom.xml you would import this BOM within a <dependencyManagement> stanza. This allows
you to reference any Thorntail component or verified version of a dependency without having to
specify the <version> of each.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-bom</artifactId>
 <version>4.0.0-SNAPSHOT</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>

Chapter 11. Kernel
Maven Coordinates

The core of Thorntail is usually brought in transitively through other dependencies. It’s Maven
coordinates are:

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-kernel</artifactId>
</dependency>

CDI Components

ThreadFactory

A @Dependent-scoped ThreadFactory for utilizing Thread instances.

ExecutorService

An ExecutorService for executing tasks.

IndexView

An @Application-scoped IndexView representing the jandex’d files of the Deployment, read from
META-INF/thorntail.idx which is created by the plugin. If not found, it produces an empty
IndexView instance.

11.1. Configuration
Configuration of applications built on Thorntail is performed using MicroProfile-config
mechanisms. The default microprofile-config.properties file located within the META-INF/ directory
of the application can be used to set or override default configuration values. The same file may be
used to provide application-specific configuration which does not directly affect the Thorntail
behavior.

Additionally, other files, both within META-INF/ and on the filesystem may contribute to the final
configuration, with various degrees of priority. The priority may be controlled on a file-by-file basis
using the MicroProfile-config config_ordinal property within each file. Files with larger priorities
will override values set in files with lower priorities.

Profiles

Configuration files may be conditionally activated using profiles. Profiles are activated by setting
the Java system property of thorntail.profiles or the system environment variable of
THORNTAIL_PROFILES to a comma-separated list of names.

Search Paths & Explicit Configuration Files

To externalize configuration, the Java system property of thorntail.config.location or the system
environment variable of THORNTAIL_CONFIG_LOCATION may be set to a system-dependent delimited set
of paths. Each path is considered in turn, withi increasing priority. If a path is a directory, it will be
searched for appropriate configuration files matching any activated profiles. If a path is a regular
file, it will be loaded, regardless of name or activated profiles.

YAML

If the application includes a dependency on snakeyaml, then YAML-based configuration files will
also be located and loaded.

Environment Variables

All configuration items may be set through environment variables. As the format used for many
configuration keys may include characters not allowed as environment variable names, a
mechanical translation is performed. A requested configuration key is converted to uppercase, and
each dot is replaced with an underscore. For example, a configuration key of web.primary.port may
be configured through an environment variable named WEB_PRIMARY_PORT.

Framework Defaults

Each framework component may include default values for any required configuration item. These
defaults have a priority of -1000 to allow easy overriding of them.

Table 1. Configuration Sources

Path Priority Notes

META-INF/framework-defaults.propertes -1000 Located via classloader and provided by
framework components.

META-INF/microprofile.propertes 100 Located via classloader.

META-INF/application.properties 200 Located via classloader.

META-INF/application.yaml 200 Located via classloader, if SnakeYAML is
available

META-INF/application-profile.properties 250+ Located via classloader, in order
specified, with increasing priority.

META-INF/application-profile.yaml 250+ Located via classloader, in order
specified, with increasing priority.

application-profile.properties 250+ Located via filesystem from specified
search paths, in order, with increasing
priority.

application-profile.yaml 250+ Located via filesystem from specified
search paths, in order, with increasing
priority.

path 275 Located via filesystem, through explicit
property or environment variable.

environment variables 300 Converted from all available system
environment variables.

system properties 400 All available system properties.

Interpolation

Configuration values may be interpreted and assembled from other values. Interpolation
expressions are wrapped within delimeters of `${' and `}'. Additionally, expressions may provide a
default value, which may in turn be another expression or a literal. All interpolation is performed
before using the value converters to convert to the desired type.

As with normal usage of Config, if an interpolation expression references a configuration key and
provides no default, if that key does not exist, a NoSuchElementException will be thrown.

In the event that a literal ${ is desired within a value, without interpolation, a \ character may be
used to escape it.

All other \ which appear before any other character will be included literally in the value, not as an
escape.

${web.primary.port}

Will be replaced with the current value of the configuration item web.primary.port if it exists. If
no such value exists, an exception will be thrown.

${web.primary.port:8080}

Will be replaced with the current value of the configuration item web.primary.port if it exists. If
no such value exists, the value of 8080 will be provided, and converted as appropriate.

${web.management.port:${web.primary.port:8080}}

Will be replaced with the current value of the configuration item web.management.port if it exists.
If not such value exists, will be replaced by the current value of the configuration item
web.primary.port if it exists. If no such value exists, the value of 8080 will be provided, and
converted as appropriate.

thing-${thing.type:default}-impl

Will be a combination of the literal thing- text, the value of thing.type configuration item` if
present, using the word 'default' if not, with a suffix of -impl.

%40-$

Will result in a string literal of %40-$

\${foo}

Will result in a string literal of ${foo} without interpolation, removing the escape character.

foo\,bar

Will result in a string literal of foo\,bar without removal of the escape character.

Related Information

• MicroProfile Configuration Spec

https://microprofile.io/project/eclipse/microprofile-config/spec/src/main/asciidoc/microprofile-config-spec.asciidoc

Chapter 12. Java EE

12.1. Bean Validation
The Bean Validation component provides for using bean validation according to JSR 380.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-bean-validation</artifactId>
</dependency>

CDI Components

Injectable components are defined by the Bean Validation specification.

Related Information

• DataSources

• JMS

12.2. Servlet
The Servlet component of Thorntail enables basic Java Web Servlet processing and serving.

Maven Coordinates

To include the servlet component, add a dependency:

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-servlet</artifactId>
</dependency>

Implicit Deployment

An application archive will be scanned for all Servlet implementations and added to a default
deployment. The @WebServlet annotation should be used to configure the servlet as desired.

Explicit Deployments

To have more control over the deployment, the application may use normal CDI facilities to
produce instances of DeploymentMetaData. Each instance of DeploymentMetaData will be individually
deployed to the underlying servlet container.

Management Deployments

Various other components, such as Metrics and Health produce additional web endpoints. Each of
these are marked as management deployments. By default, these management deployments will be
automatically deployed alongside the application deployment. The servlet component may be

http://beanvalidation.org/2.0/spec/#integration-cdi

configured (see below) to separate application endpoints from management endpoints.

Static Content

Your application may provide static resources through its classpath, under static/, public/ or META-
INF/resources/ within your jar. In a Maven-based project, that would be represented by paths such
as:

• src/main/resources/static/

• src/main/resources/public/

• src/main/resources/META-INF/resources/

Any file in the root of those directories would be served at the root of your application’s context
path. The static or public prefix is not included in the resulting URL.

For instance:

src/main/resources/static/index.html would be served by default at /index.html.

Configuration of Primary Endpoints

If the management endpoints (see below) are not configured separately, then the primary
configuration applies to all endpoints.

web.primary.host

Sets the host or interface to bind the primary endpoint connection listener.

web.primary.port

Sets the port to bind the primary endpoint connection listener. If this value is set to 0, a random
available port will be used.

Configuration of Management Endpoints

Two configuration properties control which host and port management endpoints are served from.
By default, they match the primary host and port, and serve from the same connection.

To change the management host or port, use the following configuration properties:

web.management.host

Sets the host or interface to bind the management endpoint connection listener.

web.management.port

Sets the port to bind the management endpoint connection listener. If this value is set to 0, a
random available port will be used.

Configuration of Undertow

The servlet componet includes a variety of configuration options related to the default Undertow-
based implementation.

undertow.io-threads

The number of I/O threads to use by the web server. By default it is calculated as the maximum
of 2 or the number of available CPUs.

undertow.worker-threads

The number of worker threads used by the web server. By default it is calculated as 8 times the
number of I/O threads.

undertow.high-water

The high water mark for a server’s connections. Once this number of connections have been
accepted, accepts will be suspended for that server.

undertow.low-water

The low water mark for a server’s connections. Once the number of active connections have
dropped below this number, accepts can be resumed for that server.

undertow.tcp-nodelay

Configure a TCP socket to disable Nagle’s algorithm.

undertow.cork

Specify that output should be buffered. The exact behavior of the buffering is not specified; it
may flush based on buffered size or time.

CDI Components

To enable creation of well-integrated applications, the Servlet component provides access to several
CDI components.

@Primary URL

A URI with the qualifier of @Primary is available for injection. It specifies the URL of the primary
endpoint.

@Primary InetSocketAddress

An InetSocketAddress with the qualifier of @Primary is available for injection. It specifies the
address and port of the primary endpoint.

@Management URL

A URI with the qualifier of @Primary is available for injection. It specifies the URL of the
management endpoint. This may be the same as the URL with the @Primary qualifier if the
management endpoint has not been separately configured.

@Management InetSocketAddress

An InetSocketAddress with the qualifier of @Primary is available for injection. It specifies the
address and port of the management endpoint. This may be the same as the InetSocketAddress
with the @Primary qualifier if the management endpoint has not been separately configured.

Supported Metrics

A variety of metrics are automatically provided if Metrics is configured.

deployment.name.request

Total number of requests serviced by the named deployment.

deployment.name.request.1xx

Total number of requests which responded with an HTTP response code between 100 and 199.

deployment.name.request.2xx

Total number of requests which responded with an HTTP response code between 200 and 299.

deployment.name.request.3xx

Total number of requests which responded with an HTTP response code between 300 and 399.

deployment.name.request.4xx

Total number of requests which responded with an HTTP response code between 400 and 499.

deployment.name.request.5xx

Total number of requests which responded with an HTTP response code between 500 and 599.

deployment.name.response

Average response time for all responses.

12.3. JAX-RS
The JAX-RS component provides support for the JAX-RS specification. The application will be
scanned for an Application component annotated with @ApplicationPath. If the discovered
application does not provide a list of resources, they will be automatically scanned and added to the
application.

JSON-P and the POJO-to-JSON Jackson provider are implicitly available to JAX-RS applications.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jaxrs</artifactId>
</dependency>

12.4. WebSockets
The WebSockets components brings in support for JSR-356 websocket client and server endpoints.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-websockets</artifactId>
</dependency>

12.5. JSON-P
The JSON-P component provides access to the JSON-P API.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jsonp</artifactId>
</dependency>

12.6. JNDI
The JNDI component provides support for the Java Naming and Directory Interface.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jndi</artifactId>
</dependency>

CDI Components

InitialContext

The JNDI initial context may be injected.

12.7. JDBC
The JDBC component helps with auto-detecting and registering JDBC drivers.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jdbc</artifactId>
</dependency>

Table 2. Detected Drivers

Driver Identifier

H2 h2

MySQL mysql

The identifier of each detected driver may be used when configuring a DataSource.

Related Information

• DataSources

12.8. DataSources
The DataSources component provides access to managed JDBC datasources.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-datasources</artifactId>
</dependency>

Configuration

DataSources may be configured by providing a set of configuration properties for each datasource.
Each configuration property has the prefix of datasource.MyDS.

datasource.MyDS.username

The username for connecting to the datasource.

datasource.MyDS.password

The password for connecting to the datasource.

datasource.MyDS.connection-url

The JDBC connection URL for the datasource.

datasource.MyDS.driver

The simple identifier of the JDBC driver for the datasource.

datasource.MyDS.trace

Enable tracing if OpenTracing is available. Acceptable values are OFF, ALWAYS, and ACTIVE. By
setting to ACTIVE, only usage of the datasource when there is already an active parent context
will be traced.

Related Information

• JDBC

• JCA

12.9. JPA
The JPA component provides support for JPA EntityManager and @PersistenceContext resources.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jpa</artifactId>
</dependency>

Configuration

jpa.PersistenceUnitId.trace

Enable tracing if OpenTracing is available. Acceptable values are OFF, ALWAYS, and ACTIVE. By
setting to ACTIVE, only usage of the EntityManager when there is already an active parent context
will be traced.

Related Information

• JPA Support

12.10. JPA Support
The JPA Support component provides support for JPA EntityManager and @PersistenceContext
resources inside of a CDI container.

@RequestScoped
public class EmployeeDao {
 @PersistenceContext
 EntityManager em;

 @PersistenceUnit
 EntityManagerFactory emf;

 public Employee getEmployeeById(Long employeeId){
 return em.find(Employee.class, employeeId);
 }
 ...
}

12.11. JTA
The JTA component provides access to a TransactionManager and the JTA API.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jta</artifactId>
</dependency>

12.12. JCA
The JCA component provides for using resource adapters.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jca</artifactId>
</dependency>

Implicit Deployment

If the configuration property of jca.resource-adapters is set to a string or array of strings, each
name is attempted to be loaded and deployed as a resource adapter. For each name, a path is
constructed, using the format of META-INF/name-ra.xml. The classpath is searched for a resource
under that path, and if found, deployed as a resource adapter. For instance, if jca.resource-
adapters is set to artemis,xadisk, then both META-INF/artemis-ra.xml and META-INF/xadisk-ra.xml are
considered as deployable resource adapters. All classes related to the resource adapter should be in
the normal classpath, usually as a .jar artifact, not a .rar artifact.

Explicit Deployment

In the event your application requires location of an ra.xml using different rules than the implicit
deployment supports, your components may inject both the ResourceAdapterFactory and
ResourceAdapterDeployments.

The factory may be used to parse an arbitrary resource from the classpath as an ra.xml type of file.
Once parsed, the result should be added to the ResourceAdapterDeployments collection.

Configuration

jca.resource-adapters

An array of strings of resource-adapter XML deployment descriptors to locate and deploy.

@MessageDriven Components

While the @MessageDriven annotation is actually part of the EJB3 specification, since it relates to
resource adapters, it is supported through the JCA component.

Any normal POJO marked as @MessageDriven and implementing the appropriate interface (such as
javax.jms.MessageListener for JMS resource adapters) will be deployed as a message-driven
component.

These components exist within the normal CDI container, and will be injected as appropriate. These
components are generally short-lived and managed by the appropriate resource-adapter, and
therefore may not be injected directly into other CDI components.

If OpenTracing is available, these components may be marked with @Traced to trace their
invocations.

CDI Components

ResourceAdapterDeploymentFactory

A factory capable of locating an XML file within the classpath and parsing it into a
ResourceAdapterDeployment.

ResourceAdapterDeployments

A collection which accepts ResourceAdapterDeployment instances for deployment.

Related Information

• DataSources

• JMS

12.13. JMS
The JMS component provides for easily connecting to remote message brokers. By itself, the JMS
component provides no particular JMS client. See jms-artemis.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jms</artifactId>
</dependency>

CDI Components

JMSContext

Injectable JMS context which may be used to create queues & topics, consumers & producers.

JNDI bindings

java:comp/DefaultJMSConnectionFactory

The default JMS connection factory.

Integrating a JMS Client

See JCA for deploying a resource adapter for the JMS client.

The integration should also ensure it @Produces a ConnectionFactory which the JMS component will
use to produce JMSContext instances.

Related Information

JMS-Artemis

12.14. JMS-Artemis
The JMS-Artemis component provides for easily connecting to an external ActiveMQ Artemis
message broker.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-jms-artemis</artifactId>
</dependency>

Configuration

By default, ActiveMQ-Artemis client is provided, and respects the following configuration options:

artemis.username

The username for the remote connection>

artemis.password

The password for the remote connection.

artemis.url

The remote connection URL, which must be set unless less artemis.host and artemis.port are
used.

artemis.host

The remote connection host, if not using artemis.url. Defaults to localhost.

artemis.port

The remote connection port, if not using artemis.url. Defaults to 61616.

Chapter 13. MicroProfile

13.1. Config
Configuration is a in-built component of the core component, and requires no additional Maven
dependency.

13.2. Fault Tolerance
The Fault Tolerance component supports the MicroProfile Fault Tolerance specification.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-faulttolerance</artifactId>
</dependency>

13.3. Health
The Health component provides support for the MicroProfile Health API.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-health</artifactId>
</dependency>

Related Information

• MicroProfile Health Spec

13.4. Metrics
The Metrics component supports the collection and reporting of metrics using the MicroProfile
Metrics spec. This includes providing a Prometheus-compliant endpoint.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-metrics</artifactId>
</dependency>

Built-in Metrics

https://microprofile.io/project/eclipse/microprofile-health

Depending on which other components your application uses, some metrics will be automatically
provided. Please refer to each component’s documentation for details.

Related Information

• Servlet Metrics

13.5. OpenAPI
The OpenAPI component supports the generation of an OpenAPI document representing the JAX-RS
Resources using the MicroProfile OpenAPI spec.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-openapi</artifactId>
</dependency>

Management Deployment

The OpenAPI component will deploy a servlet to the /openapi endpoint which returns the OpenAPI
document for the application. The /openapi endpoint is accessible under the management host and
port.

Related Information

• Servlet Management Endpoints

13.6. OpenTracing
The OpenTracing component supports the MicroProfile OpenTracing specification.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-opentracing</artifactId>
</dependency>

Usage

This component uses the OpenTracing TracerResolver to locate an appropriately-configured Tracer
instance. Additionally, applications may provide instances of TracerProvider which may also be
used to discovered a fully-configured Tracer implementation. The discovered Tracer will be
registered with the GlobalTracer which allows for easy access in arbitrary code.

Testing

If the OpenTracing MockResolver is available on the classpath (usually through a
<scope>test</scope> dependency), it is given the highest priority for resolution.

CDI Components

Tracer

An injectable OpenTracing Tracer.

TracerProvider

An interface which application components may implement in order to assist in resolving the
current Tracer implementation.

Related Information

• OpenTracing TracerResolver

13.6.1. OpenTracing with Jaeger

The OpenTracing component can detect the presence of Jaeger and enable its tracer.

Usage

By setting jaeger.endpoint the HTTP sender will be used to send sampling information. Otherwise,
the UDP sender will be used and configured via jaeger.agent.host and jaeger.agent.port.

Configuration

jaeger.service-name

Required service name for the application.

jaeger.sampler.type

The sampler type.

jaeger.sampler.param

The sampler parameter.

jaeger.sampler.manger.host-port

The sampler remote manager host/port combination.

jaeger.agent.host

The UDP agent host.

jaeger.agent.port

The UDP agent port.

jaeger.endpoint

The endpoint for the HTTP sender.

CDI Components

@Udp

Qualifier for direct access to the Jaeger UDP Sender

@Http

Qualifier for direct access to the Jaeger HTTP Sender

Related Information

• Jaeger Documentation

https://github.com/opentracing-contrib/java-tracerresolver
https://jaeger.readthedocs.io/en/latest/

Chapter 14. Other

14.1. Vert.x
The Vert.x component provides access to the Vert.x event-bus and message-driven consumers.

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-vertx</artifactId>
</dependency>

Configuration

vertx.cluster-host

The host for clustering Vert.x. Defaults to localhost.

vertx.cluster-port

The port for clustering Vert.x. Defaults to 0.

@MessageDriven Components

Any implementation of the VertxListener with the appropriate @MessageDriven annotation will be
registered with the Vert.x resource adapter to consume inbound messages. These components are
short-lived and may not be injected into other components. They are managed by the CDI container,
though, and may have other components inject into them.

package com.mycorp;

import javax.ejb.ActivationConfigProperty;
import javax.ejb.MessageDriven;
import javax.inject.Inject;

import io.vertx.core.eventbus.Message;
import io.vertx.resourceadapter.inflow.VertxListener;

@MessageDriven(
 activationConfig = {
 @ActivationConfigProperty(
 propertyName = "address",
 propertyValue = "driven.event.address"
)
 }
)
public class Receiver implements VertxListener {

 @Override
 public <T> void onMessage(Message<T> message) {
 // handle inbound message here.
 }

 @Inject
 private MyOtherComponent component;
}

CDI Components

VertxEventBus

The Vert.x event bus.

VertxConnectionFactory

The Vert.x connection factory.

JNDI Bindings

java:jboss/vertx/connection-factory

The VertxConnectionFactory.

Related Information

• JCA

14.2. OGM
Provides support for Hibernate OGM EntityManager and @PersistenceContext resources and allows
for the use of NoSQL datastores with JPA.

Supported Datastores

• Infinispan

• MongoDB

• Neo4j

• Cassandra

• CouchDB

• EhCache

• Apache Ignite

• Redis

Maven Coordinates

<dependency>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-ogm</artifactId>
</dependency>

Version of Hibernate Search is managed by the Thorntail bom to ensure compatibility with OGM.
Add the following to pom.xml if required by the NoSQL driver in use with OGM.

<dependency>
 <groupId>org.hibernate</groupId>
 <artifactId>hibernate-search-orm</artifactId>
</dependency>

Related Information

• JPA Support

• Hibernate OGM 5.3 Documentation

https://docs.jboss.org/hibernate/ogm/5.3/reference/en-US/html_single/

Guides

Chapter 15. Build Thorntail from Source
The source of Thorntail is available on GitHub.

Clone from GitHub

git clone https://github.com/thorntail/thorntail.git

Build

The default build assumes docker is available on your system.

mvn install

Build without Docker

To skip any tests that assume docker is available, use the -DskipDocker option.

mvn install -DskipDocker

Build and run the MicroProfile TCKs

Since the MicroProfile TCKs take a fair amount of time to execute, they are excluded by default. To
enable them, use the -Ptck option to enable the TCK profile.

mvn install -Ptck

Source Repository Layout

From the root of the repository, the code is grouped into a few large categories:

core/

Contains the core kernel and other components consumed by user applications.

bom/

The Bill of Materials pom.xml use for version management by both Thorntail itself and user
applications.

plugins/

Maven (and in the future, Gradle) plugins which assist in packaging of Thorntail-based projects.

testsuite/

Tests (both those that use docker and simple ones that do not) and MicroProfile TCKs.

archetypes/

Maven archetype projects to assist in the creation of new user applications.

docs/

AsciiDoc-based documentation.

https://github.com/thorntail/thorntail

Chapter 16. How to build Linux Containers
as Layers
Your application can be packaged as a multi-layered Linux Container using the Fabric8 docker-
maven-plugin.

Configure the Base Distribution

Depending on your build process, you may wish to create the base layer (with all of your
dependencies) in one Maven project, and create the top-most layer with your application artifact in
another one.

The base layer will include the Thorntail dependencies, along with your application’s dependencies
using normal <dependency> blocks.

Configure the thorntail-maven-plugin to create a dir format thin mode distribution:

<plugin>
 <groupId>io.thorntail</groupId>
 <artifactId>thorntail-maven-plugin</artifactId>
 <configuration>
 <format>dir</format>
 <mode>thin</mode>
 </configuration>
</plugin>

Configure the Base Container Image

Next, configure the fabric8-maven-plugin to package the base distribution:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

This image builds upon a base JDK8 image theoretically named myapp/base-jdk8 within the <from>
line. The only requirement of this image is the ability to execute a JDK8-compatible JVM.

This configuration will ensure that within the image, the /$thorntail directory will contain your
application’s run-time components.

Additionally, the <cmd> configuration ensures the distribution’s run.sh will be used to launch the
application.

We configure <skip> under <run> to true since this image is not directly executable, since it lacks
application logic.

Set up the assembly

This image gets its content from an assembly descriptor, in this case named base.xml. You will need
to create this file under src/main/docker. It will copy the contents from target/myapp-1.0.0-bin/ into
/thorntail within the container. Ultimately, it will populate the /thorntail/bin and /thorntail/lib
contents.

base.xml Assembly Descriptor

<assembly>
 <fileSets>
 <fileSet>
 <directory>target/${project.artifactId}-${project.version}-bin</directory>
 <outputDirectory>.</outputDirectory>
 <includes>
 <include>**/*</include>
 </includes>
 </fileSet>
 </fileSets>
</assembly>

Build the base

From within this project directory, build the base image using Maven

mvn package docker:build

Set up Application Dependencies

Assuming the previous pom.xml had a groupId of com.mycorp.myapp and an artifactId of app-base, we
add it as the only compile <dependency> of your application layer.

<dependencies>
 <dependency>
 <groupId>com.mycorp.myapp</groupId>
 <artifactId>app-base</artifactId>
 </dependency>
</dependencies>

Configure the Distribution (optional)

You may configure the thorntail-maven-plugin in any fashion (or not at all) within this project.

Configure the Application Container Image

Once again, use the Fabric8 docker-maven-plugin to create another image, this time based upon the
previously-created image:

<plugin>
 <groupId>io.fabric8</groupId>
 <artifactId>docker-maven-plugin</artifactId>
 <configuration>
 <images>
 
 </images>
 </configuration>
</plugin>

The will create an push an image named myapp/base. It uses the built-in <descriptorRef> of artifact
to install the application artifact under thorntail/app.

Additionally, it configures a <wait> element looking for the boot completion message, which may
help if you use this image in integration tests.

Build the Application Container Image

Build using Maven:

mvn package docker:build

Related Information

• [container-fabric8]

Chapter 17. How to build Linux Containers
using Fabric8 Maven Plugin
The Fabric8 docker-maven-plugin is a Maven plugin which makes it easy to create, push and run
Linux container images.

Plugin Configuration

Regardless of the mode and format used with the thorntail-maven-plugin, the docker-maven-plugin can
build a suitable image for your application. As with other Maven plugins, it is configured within a
typical <plugin> block within your pom.xml. A single 
 </images>
 </configuration>
</plugin>

In the above example, we use fabrci8/java-jboss-openjdk8-jdk as the base image. This image
includes OpenJDK on CentOS. Additionally, it provides a run-java.sh script which intelligently and
configurably can execute your application.

The image uses the descriptorRef of the build-in artifact-with-dependencies descriptor. This causes
both your project artifact and all transitive dependencies to be copied into the /maven directory of
the resulting image.

The run-java.sh script is the default command of this image, and is configured using environment
variables.

The JAVA_APP_DIR environment variable simply points to the /maven directory within the image, to
define where the application’s .jar files were installed.

The JAVA_MAIN_CLASS environment variable should be defined either to your own main(…) class, or

the default io.thorntail.Thorntail class.

Building the Image

Using normal Maven build command will produce and push the image to your container
repository:

mvn package docker:build

Running the image

Normal docker commands may now be used to execute the image with any additional arguments or
configuration.

docker run myapp/app-fabric8

Related Information

• Fabric8 docker-maven-plugin documentation

• java-jboss-openjdk8-jdk image documentation

• run-java.sh configuration documentation

https://dmp.fabric8.io/
https://github.com/fabric8io-images/java/blob/master/images/jboss/openjdk8/jdk/README.md
https://github.com/fabric8io-images/run-java-sh/tree/master/fish-pepper/run-java-sh

Chapter 18. Using log4j
Problem

While Thorntail does not use log4j directly, some of the libraries in your application may use it. If
you do not configure log4j in your application, all logging output, including output from Thorntail
will get swallowed, preventing you from seeing your logs.

Solutions

The recommended solution is to specify the path to your log4j.properties file as a
log4j.configuration system property. In your parameters to your JVM you would specify it like this:

java -Dlog4j.configuration=log4j.properties

Please note, when using this method you can use any name you want for your properties file.

The other solution is to place a file name log log4j.properties in the default path for your
classloader. In a Thorntail application you can just place this file in the root of your source
directory; typically /src/main/java.

http://logging.apache.org/log4j/1.2/manual.html

Appendix

Chapter 19. License

 Apache License
 Version 2.0, January 2004
 http://www.apache.org/licenses/

 TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION

 1. Definitions.

 "License" shall mean the terms and conditions for use, reproduction,
 and distribution as defined by Sections 1 through 9 of this document.

 "Licensor" shall mean the copyright owner or entity authorized by
 the copyright owner that is granting the License.

 "Legal Entity" shall mean the union of the acting entity and all
 other entities that control, are controlled by, or are under common
 control with that entity. For the purposes of this definition,
 "control" means (i) the power, direct or indirect, to cause the
 direction or management of such entity, whether by contract or
 otherwise, or (ii) ownership of fifty percent (50%) or more of the
 outstanding shares, or (iii) beneficial ownership of such entity.

 "You" (or "Your") shall mean an individual or Legal Entity
 exercising permissions granted by this License.

 "Source" form shall mean the preferred form for making modifications,
 including but not limited to software source code, documentation
 source, and configuration files.

 "Object" form shall mean any form resulting from mechanical
 transformation or translation of a Source form, including but
 not limited to compiled object code, generated documentation,
 and conversions to other media types.

 "Work" shall mean the work of authorship, whether in Source or
 Object form, made available under the License, as indicated by a
 copyright notice that is included in or attached to the work
 (an example is provided in the Appendix below).

 "Derivative Works" shall mean any work, whether in Source or Object
 form, that is based on (or derived from) the Work and for which the
 editorial revisions, annotations, elaborations, or other modifications
 represent, as a whole, an original work of authorship. For the purposes
 of this License, Derivative Works shall not include works that remain
 separable from, or merely link (or bind by name) to the interfaces of,
 the Work and Derivative Works thereof.

 "Contribution" shall mean any work of authorship, including
 the original version of the Work and any modifications or additions
 to that Work or Derivative Works thereof, that is intentionally
 submitted to Licensor for inclusion in the Work by the copyright owner
 or by an individual or Legal Entity authorized to submit on behalf of
 the copyright owner. For the purposes of this definition, "submitted"
 means any form of electronic, verbal, or written communication sent
 to the Licensor or its representatives, including but not limited to
 communication on electronic mailing lists, source code control systems,
 and issue tracking systems that are managed by, or on behalf of, the
 Licensor for the purpose of discussing and improving the Work, but
 excluding communication that is conspicuously marked or otherwise
 designated in writing by the copyright owner as "Not a Contribution."

 "Contributor" shall mean Licensor and any individual or Legal Entity
 on behalf of whom a Contribution has been received by Licensor and
 subsequently incorporated within the Work.

 2. Grant of Copyright License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 copyright license to reproduce, prepare Derivative Works of,
 publicly display, publicly perform, sublicense, and distribute the
 Work and such Derivative Works in Source or Object form.

 3. Grant of Patent License. Subject to the terms and conditions of
 this License, each Contributor hereby grants to You a perpetual,
 worldwide, non-exclusive, no-charge, royalty-free, irrevocable
 (except as stated in this section) patent license to make, have made,
 use, offer to sell, sell, import, and otherwise transfer the Work,
 where such license applies only to those patent claims licensable
 by such Contributor that are necessarily infringed by their
 Contribution(s) alone or by combination of their Contribution(s)
 with the Work to which such Contribution(s) was submitted. If You
 institute patent litigation against any entity (including a
 cross-claim or counterclaim in a lawsuit) alleging that the Work
 or a Contribution incorporated within the Work constitutes direct
 or contributory patent infringement, then any patent licenses
 granted to You under this License for that Work shall terminate
 as of the date such litigation is filed.

 4. Redistribution. You may reproduce and distribute copies of the
 Work or Derivative Works thereof in any medium, with or without
 modifications, and in Source or Object form, provided that You
 meet the following conditions:

 (a) You must give any other recipients of the Work or
 Derivative Works a copy of this License; and

 (b) You must cause any modified files to carry prominent notices
 stating that You changed the files; and

 (c) You must retain, in the Source form of any Derivative Works
 that You distribute, all copyright, patent, trademark, and
 attribution notices from the Source form of the Work,
 excluding those notices that do not pertain to any part of
 the Derivative Works; and

 (d) If the Work includes a "NOTICE" text file as part of its
 distribution, then any Derivative Works that You distribute must
 include a readable copy of the attribution notices contained
 within such NOTICE file, excluding those notices that do not
 pertain to any part of the Derivative Works, in at least one
 of the following places: within a NOTICE text file distributed
 as part of the Derivative Works; within the Source form or
 documentation, if provided along with the Derivative Works; or,
 within a display generated by the Derivative Works, if and
 wherever such third-party notices normally appear. The contents
 of the NOTICE file are for informational purposes only and
 do not modify the License. You may add Your own attribution
 notices within Derivative Works that You distribute, alongside
 or as an addendum to the NOTICE text from the Work, provided
 that such additional attribution notices cannot be construed
 as modifying the License.

 You may add Your own copyright statement to Your modifications and
 may provide additional or different license terms and conditions
 for use, reproduction, or distribution of Your modifications, or
 for any such Derivative Works as a whole, provided Your use,
 reproduction, and distribution of the Work otherwise complies with
 the conditions stated in this License.

 5. Submission of Contributions. Unless You explicitly state otherwise,
 any Contribution intentionally submitted for inclusion in the Work
 by You to the Licensor shall be under the terms and conditions of
 this License, without any additional terms or conditions.
 Notwithstanding the above, nothing herein shall supersede or modify
 the terms of any separate license agreement you may have executed
 with Licensor regarding such Contributions.

 6. Trademarks. This License does not grant permission to use the trade
 names, trademarks, service marks, or product names of the Licensor,
 except as required for reasonable and customary use in describing the
 origin of the Work and reproducing the content of the NOTICE file.

 7. Disclaimer of Warranty. Unless required by applicable law or
 agreed to in writing, Licensor provides the Work (and each
 Contributor provides its Contributions) on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
 implied, including, without limitation, any warranties or conditions
 of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
 PARTICULAR PURPOSE. You are solely responsible for determining the

 appropriateness of using or redistributing the Work and assume any
 risks associated with Your exercise of permissions under this License.

 8. Limitation of Liability. In no event and under no legal theory,
 whether in tort (including negligence), contract, or otherwise,
 unless required by applicable law (such as deliberate and grossly
 negligent acts) or agreed to in writing, shall any Contributor be
 liable to You for damages, including any direct, indirect, special,
 incidental, or consequential damages of any character arising as a
 result of this License or out of the use or inability to use the
 Work (including but not limited to damages for loss of goodwill,
 work stoppage, computer failure or malfunction, or any and all
 other commercial damages or losses), even if such Contributor
 has been advised of the possibility of such damages.

 9. Accepting Warranty or Additional Liability. While redistributing
 the Work or Derivative Works thereof, You may choose to offer,
 and charge a fee for, acceptance of support, warranty, indemnity,
 or other liability obligations and/or rights consistent with this
 License. However, in accepting such obligations, You may act only
 on Your own behalf and on Your sole responsibility, not on behalf
 of any other Contributor, and only if You agree to indemnify,
 defend, and hold each Contributor harmless for any liability
 incurred by, or claims asserted against, such Contributor by reason
 of your accepting any such warranty or additional liability.

 END OF TERMS AND CONDITIONS

 APPENDIX: How to apply the Apache License to your work.

 To apply the Apache License to your work, attach the following
 boilerplate notice, with the fields enclosed by brackets "[]"
 replaced with your own identifying information. (Don't include
 the brackets!) The text should be enclosed in the appropriate
 comment syntax for the file format. We also recommend that a
 file or class name and description of purpose be included on the
 same "printed page" as the copyright notice for easier
 identification within third-party archives.

 Copyright [yyyy] [name of copyright owner]

 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at

 http://www.apache.org/licenses/LICENSE-2.0

 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and

 limitations under the License.

	Thorntail Documentation
	Table of Contents
	Introduction
	Chapter 1. Lessons Learned
	Chapter 2. Architecture
	2.1. Basics
	2.2. Details

	Chapter 3. Concepts
	3.1. Microservice
	3.2. CDI-native
	3.3. MicroProfile-native
	3.4. Flat Classpath

	Usage
	Chapter 4. main(…)

	Tools
	Chapter 5. Maven Plugin
	5.1. Modes
	5.2. Formats
	5.3. main()
	5.4. Other configuration
	5.5. Distribution Structure

	Chapter 6. Maven Archetypes
	6.1. JAX-RS

	Chapter 7. Testing with JUnit
	Chapter 8. Testing with Arquillian
	Chapter 9. Developer Tools

	Components
	Chapter 10. Using the BOM with Maven
	Chapter 11. Kernel
	11.1. Configuration

	Chapter 12. Java EE
	12.1. Bean Validation
	12.2. Servlet
	12.3. JAX-RS
	12.4. WebSockets
	12.5. JSON-P
	12.6. JNDI
	12.7. JDBC
	12.8. DataSources
	12.9. JPA
	12.10. JPA Support
	12.11. JTA
	12.12. JCA
	12.13. JMS
	12.14. JMS-Artemis

	Chapter 13. MicroProfile
	13.1. Config
	13.2. Fault Tolerance
	13.3. Health
	13.4. Metrics
	13.5. OpenAPI
	13.6. OpenTracing
	13.6.1. OpenTracing with Jaeger

	Chapter 14. Other
	14.1. Vert.x
	14.2. OGM

	Guides
	Chapter 15. Build Thorntail from Source
	Chapter 16. How to build Linux Containers as Layers
	Chapter 17. How to build Linux Containers using Fabric8 Maven Plugin
	Chapter 18. Using log4j

	Appendix
	Chapter 19. License

